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■ Abstract The biosynthesis of one riboflavin molecule requires one molecule of
GTP and two molecules of ribulose 5-phosphate as substrates. The imidazole ring of
GTP is hydrolytically opened, yielding a 4,5-diaminopyrimidine which is converted to
5-amino-6-ribitylamino-2,4(1H,3H)-pyrimidinedione by a sequence of deamination,
side chain reduction and dephosphorylation. Condensation of 5-amino-6-ribitylamino-
2,4(1H,3H)-pyrimidinedione with 3,4-dihydroxy-2-butanone 4-phosphate obtained
from ribulose 5-phosphate affords 6,7-dimethyl-8-ribityllumazine. Dismutation of the
lumazine derivative yields riboflavin and 5-amino-6-ribitylamino-2,4(1H,3H)-pyri-
midinedione, which is recycled in the biosynthetic pathway. The structure of the
biosynthetic enzyme, 6,7-dimethyl-8-ribityllumazine synthase, has been studied in
considerable detail.
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INTRODUCTION

Riboflavin (vitamin B2) is biosynthesized in plants and in many bacteria. Vegeta-
bles and milk are major sources of the vitamin in human nutrition. Ruminants
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can derive vitamin B2 from their intestinal flora. The daily recommended al-
lowance for vitamin B2 is 1.8 mg (59). Although the flavocoenzymes are abso-
lutely indispensable in all cellular organisms, symptoms of riboflavin deficiency are
rarely observed in humans. However, latent riboflavin deficiency may be relatively
common, especially in women and adolescents (36)—especially in developing
countries (1).

Apart from natural sources, vitamin B2 is manufactured in bulk amounts for
vitamin supplementation of human and animal nutrients. Fermentation processes,
which are progressively replacing chemical manufacturing processes, have a long
history. They were initially prompted by the natural occurrence of bacteria, yeasts,
and fungi, which produce riboflavin in levels exceeding their apparent metabolic
requirements (37). Early studies on the biosynthesis of vitamin B2 were intimately
linked with attempts to increase the production of riboflavin by flavinogenic micro-
organisms.

The discovery in 1952 by MacLaren (67) that the production of riboflavin
can be increased by the addition of purine derivatives to the culture medium of
Eremothecium ashbyiisuggested a connection between purine and riboflavin. Nu-
merous studies have subsequently shown that the pyrimidine moiety of riboflavin is
biosynthetically related to guanine (12, 16, 71, 72, 87). Subsequent work identified
guanosine triphosphate (GTP) as the committed precursor of riboflavin supplying
the pyrimidine ring and the nitrogen atoms of the pyrazine ring, as well as the
ribityl side chain of the vitamin (41, 42, 68).

The early work on the riboflavin biosynthetic pathway has been reviewed re-
peatedly (2, 4–7, 30–32, 37, 88, 90, 94). This article focuses on recent structural
and mechanistic studies of enzymes involved in riboflavin biosynthesis. Some of
the reactions are mechanistically complex and still incompletely understood.

AN OVERVIEW OF THE RIBOFLAVIN PATHWAY

The biosynthetic pathway is summarized in Figure 1. The imidazole ring of
GTP (structure 1 of Figure 1) is opened hydrolytically under release of formate
accompanied by release of pyrophosphate, which is catalyzed by GTP cyclohydro-
lase II (12, 13, 16, 26, 41, 42, 58, 83, 108, 109). The enzyme product 2,5-diamino-
6-ribosylamino-4(3H)-pyrimidinone 5′-phosphate (2 in Figure 1) is converted to
5-amino-6-ribitylamino-2,4(1H,3H)-pyrimidinedione 5′-phosphate (5 in Figure 1)
by two reaction steps, involving the hydrolytic cleavage of the position 2 amino
group of the heterocyclic ring and the reduction of the ribosyl side chain affording
the ribityl side chain of the vitamin (33, 83). The sequence of these reaction steps
varies in different organisms. In eubacteria, the deamination precedes the side
chain reduction (33). In yeasts and fungi, the reduction precedes the deamination
(10, 54, 64, 103).

5′-Phosphate of structure 5 can not serve as substrate for 6,7-dimethyl-8-
ribityllumazine synthase. Hence, the compound must be dephosphorylated prior
to further conversion (49, 75). Nothing is known about that reaction step.
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Figure 1 Biosynthesis of riboflavin.

The dephosphorylated 5-amino-6-ribitylamino-2,4(1H,3H)-pyrimidinedione
(6 in Figure 1) is condensed with 3,4-dihydroxybutanone 4-phosphate (7 in
Figure 1) by 6,7-dimethyl-8-ribityllumazine synthase (57, 75, 111). The carbo-
hydrate type substrate (7 in Figure 1) of that enzyme has been discovered only
relatively recently (111, 112). It is formed from ribulose 5-phosphate (10 in
Figure 1) by an unusual reaction involving the loss of carbon atom 4 via an in-
tramolecular rearrangement (113).
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The final step of the biosynthetic pathway is the dismutation of 6,7-dimethyl-
8-ribityllumazine (8 in Figure 1) catalyzed by riboflavin synthase (48, 89, 92, 93).
The second product of the dismutation is 5-amino-6-ribitylamino-2,4(1H,3H)-
pyrimidinedione (6 in Figure 1) (114). This compound is a substrate of lumazine
synthase and is recycled in the biosynthetic pathway. Stoichiometrically, the for-
mation of riboflavin requires one equivalent of GTP and two equivalents of ribulose
5-phosphate. Of the 17 carbon atoms of the riboflavin molecule, all but four are
thus derived from the pentose phosphate pool.

The following section describes the reaction steps in closer detail.

GTP CYCLOHYDROLASE II

GTP cyclohydrolase II was first isolated from cell extracts ofEscherichia coli
(41). In an apparent tandem reaction, the enzyme catalyzes the release of C-8 of
the imidazole ring of GTP as formate and the release of pyrophosphate from the
triphosphoribosyl side chain. The enzyme requires magnesium ions for activity.
The mechanism of the two hydrolytic reactions occurring at distant sites of the
substrate molecule remains to be explained. Conceivably, the reaction could pro-
ceed in three steps: (a) covalent phosphoguanylation of the enzyme with release
of pyrophosphate; (b) hydrolytic release of formate from the covalently bound
phosphoguanosyl moiety; and (c) hydrolytic cleavage of the phosphodiester bond
with the release of product 2 (Figure 1).

GTP cyclohydrolase II ofE. coli is specified by theribA gene (98). The 21.8-
kDa protein is likely to form a homodimer.

Certain bacteria, such asBacillus subtilis, form bifunctional proteins with
GTP cyclohydrolase and 3,4-dihydroxy-2-butanone 4-phosphate synthase activity
(53, 99).

DEAMINASE AND REDUCTASE

Bifunctional bacterial enzymes catalyzing the deamination of compound 2
(Figure 1) and the subsequent reduction of the phosphoribosyl side chain of 3
(Figure 1) have been found inE. coli andB. subtilis(95). Both enzyme activities
require Mg2+. The reductase requires NADPH or NADH as cofactor (33, 52).
Genes specifying similar putative proteins have been found in a variety of mi-
croorganisms.

The reductase of the yeastSaccharomyces cerevisiaeuses the product of GTP
cyclohydrolase II as substrate and converts it to 2,5-diamino-6-ribitylamino-pyri-
midinone 5′-phosphate (4 in Figure 1). The similarity between the reductase
specified by theRIB7gene ofS. cerevisiaeand the bacterial deaminase/reductase
is relatively low (95).

Enzymes catalyzing the deamination of ribitylaminopyrimidine (4 in Figure 1)
have been partially purified from extracts ofS. cerevisiaeandAshbya gossypii
(52, 77).
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3,4-DIHYDROXY-2-BUTANONE 4-PHOSPHATE
SYNTHASE

The formation of the bicyclic riboflavin precursor 6,7-dimethyl-8-ribityllumazine
by condensation of a 2,5-diamino-pyrimidine derivative with a four-carbon com-
pound was anticipated by early investigators (for review, see 2). However, the
actual four-carbon compound remained elusive despite numerous studies.

In vivo experiments using a wide variety of13C-labeled precursors indicated
a biosynthetic relationship between the elusive four-carbon compound and the
pentose pool via comparison of13C labeling patterns of the xylene ring with that
of the ribityl side chain of riboflavin (8, 9). More specifically, in vivo studies
suggested the assembly of the four-carbon precursors from carbon atoms 1, 2, 3,
and 5 of a compound of the pentose/pentulose pool.

Based on these data, an enzyme was subsequently isolated from the flavinogenic
yeastCandida guilliermondii, which catalyzes the formation of 3,4-dihydroxy-
2-butanone 4-phosphate from ribulose 5-phosphate (65, 74, 111, 112). Studies
with isotope-labeled ribulose 5-phosphate compounds showed that C-4 of the
substrate is extruded as formate via an intramolecular rearrangement that recon-
nects carbon atoms 3 and 5 of the pentulose precursor (113). The hydrogen atoms
at C-3 of the product are introduced from the solvent. Based on these data, a
multistep mechanism featuring a series of tautomerization reactions and a sig-
matropic rearrangement was proposed (Figure 2). More specifically, it has
been proposed that the crucial reaction is the formation of endiol (11 in Fig-
ure 2) by tautomerization. 1-Phosphate of that hypothetical intermediate had
been proposed earlier as an intermediate in the reaction catalyzed by ribulose
bisphosphate carboxylase (81, 84, 85). The elimination of water from gener-
ated endiol followed by tautomerization could yield diketone (12 in Figure 2).
A sigmatropic rearrangement subsequently generates a branched carbohydrate
(13 in Figure 2). Elimination of formate and stereospecific reprotonation af-
fords the enzyme product 3,4-dihydroxy-2-butanone 4-phosphate. The stereo-
chemical course of this sigmatropic rearrangement was studied only recently
using stereospecifically 5-2H-labeled ribulose 5-phosphates (47). According to
this study, the rearrangement proceeds with retention of the configuration at
C-4 of 7 (Figure 2), which is well in line with a 1,2-sigmatropic rearrangement
(76, 115).

The 3,4-dihydroxy-2-butanone 4-phosphate synthase ofE. coli is a homodimer
of 47-kDa specified by theribB gene (96, 97, 99). Despite the relatively large
molecular weight, structure analysis of the enzyme by nuclear magnetic reso-
nance has been initiated successfully using multiple stable isotopic labeling and
differential labeling of specific amino acid types (55, 96).

In numerous bacteria and in plants, 3,4-dihydroxy-2-butanone 4-phosphate syn-
thase occurs as a bifunctional protein also comprising a GTP cyclohydrolase II
domain (see above).
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Figure 2 Proposed mechanism of 3,4-dihydroxy-2-butanone 4-phosphate synthase.

LUMAZINE SYNTHASE

The condensation of the pyrimidine (6 in Figure 3) with 3,4-dihydroxy-2-butanone
4-phosphate (7 in Figure 3) affords one equivalent of 6,7-dimethyllumazine (8 in
Figure 3), two equivalents of water, and one equivalent of orthophosphate. The
enzyme-catalyzed reaction is regiospecific (57, 78). This suggests that the reaction
is initiated by the formation of a Schiff base via reaction of the position 5 amino
group of the pyrimidine (6 in Figure 3) with the carbonyl group of 7 (Figure 3).
The conjugation of the imine bond with the pyrimidine ring may facilitate the
abstraction of a proton from intermediate 14 (Figure 3) followed by elimination of
phosphate. Ring closure could then occur by a nucleophilic attack of the position
6 amino group on the carbohydrate side chain in conjunction with tautomerization
steps (Figure 3).

The stereoselectivity of lumazine synthase with respect to the carbohydrate
substrate is relatively low. The velocity of the lumazine formation with the natu-
rally occurringL-3,4-dihydroxy-2-butanone 4- phosphate exceeds the velocity with
theD-enantiomer only by a factor of 5. TheKM values for 6 and 7 (Figure 3) are
5µM and 63µM, respectively (57).

The lumazine synthase of plants and of many microorganisms have masses of
approximately 1 MDa. These enzymes consist of 60 identical subunits that form
a spherical capsid with icosahedral 532 symmetry (3, 15, 61, 62, 63, 106).

In Bacillaceae, the icosahedral 532 lumazine synthase capsids enclose a trimeric
riboflavin synthase module (105, 106). This enzyme complex can catalyze the last
two steps in the biosynthesis of riboflavin. The enzyme shows unusual steady state
kinetics, which have been attributed to substrate channeling (56). InB. subtilis,
this enzyme complex represents only 20% of the total riboflavin synthase activity,
whereas 80% of the riboflavin synthase activity can be attributed to 75-kDa trimers,
which are not associated with lumazine synthase.

Reconstituted, hollow capsids of lumazine synthase ofB. subtilishave been
studied by X-ray diffraction (62, 63, 100, 106). The virtually spherical molecules
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Figure 3 Mechanism of lumazine synthase.

are best described as dodecamers of pentamers. Each of the 60 equivalent active
sites is located at the interface of two adjacent subunits in a pentamer module. Both
adjacent subunits together form the surface of the active site cavity.

The ribityl side chain of the pyrimidine substrate can form hydrogen bonds with
the peptide backbone as well as with amino acid side chains (62). The hypothetical
reaction mechanism in Figure 3 suggests several proton transfer reactions expected
to implicate specific amino acid residues. However, no specific amino acid residue
participating in acid/base catalysis could be identified by active site mutagenesis
(M Fischer, K Kugelbrey, K Kis, M Cushman, R Ladenstein, et al, manuscript in
preparation). These findings suggest that the enzyme acts mainly as a positioner
for the two substrates.

The condensation of the pyrimidine 6 (Figure 3) with carbohydrate 7 (Figure 3)
can proceed at room temperature in neutral, dilute, aqueous solution in the absence
of lumazine synthase (60). It is also remarkable that the turnover number of the
enzyme fromB. subtilisis only 0.076 s−1 per subunit (57).

More recently, it was found that the lumazine synthase of certain microorgan-
isms are homopentamers (44, 73). The structure of the pentameric enzyme from
S. cerevisiaehas been determined by X-ray crystallography. Not surprisingly,
the folding patterns of the pentameric and the icosahedral lumazine synthase are
similar.

Lumazine synthase ofBrucella abortuswas found to dominate the human
antibody response against that microorganism (38, 46, 51).
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RIBOFLAVIN SYNTHASE

6,7-Dimethyl-8-ribityllumazine was detected by Masuda in 1956 (69, 70) in cul-
tures of the flavinogenic ascomyceteEremothecium ashbyii. The green fluorescent
material, designated G compound, could be converted to riboflavin by the enzyme
riboflavin synthase (89, 107, 114). The enzyme catalyzes an unusual dismutation
reaction, affording one molecule each of riboflavin and 5-amino-6-ribitylamino-
2,4(1H,3H)-pyrimidinedione (6 in Figure 4) from two molecules of 6,7-dimethyl-
8-ribityllumazine (8 in Figure 4) (89). The pyrimidine type product of riboflavin
synthase is a substrate of lumazine synthase and can be recycled in the biosynthetic
pathway (75).

Surprisingly, the dismutation of lumazine (8 in Figure 4) can proceed sponta-
neously in boiling aqueous solutions in the absence of a catalyst (17, 101, 102).
The enzyme-catalyzed and the uncatalyzed reactions have the same regiochemistry
(18, 79, 80).

Deprotonation of 6,7-dimethyl-8-ribityllumazine, which has a pK of about 8.5,
generates a complex equilibrium mixture of anionic species (19). The equilibrium
is dominated by three-cyclic species, but exomethylene form (15 in Figure 4) has
also been demonstrated as a minor species (Figure 4).

It has been assumed that the reaction catalyzed by riboflavin synthase is initiated
by the nucleophilic attack of a lumazine anion on a second lumazine molecule.
Based on the regiospecificity of the reaction, the mechanism shown in Figure 4
was proposed (18, 79, 80, 89, 91–94); it remains to be verified in closer detail.

The sequence of riboflavin synthase from eubacteria is characterized by inter-
nal sequence similarity (105). More specifically, the N-terminal and C-terminal
parts ofE. coli riboflavin synthase have 25 identical amino acid residues and 22
conservative replacements (40). This suggests that each subunit folds into two
topologically similar domains, each of which can bind one lumazine substrate.
The catalytic site of the enzyme could then be located at the domain interface in
the homotrimeric enzyme.

Figure 4 Mechanism of riboflavin synthase. R,D-ribityl.
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Archaea have riboflavin synthases devoid of any similarity with the eubacterial
enzymes (39). The archaeal riboflavin synthase subunits are considerably shorter
than those of eubacterial enzymes. Moreover, they do not show internal sequence
similarity. In contrast to the enzymes from eubacteria and yeast, they require Mg2+

for catalytic activity.

GENETICS AND REGULATION OF RIBOFLAVIN
BIOSYNTHESIS

In B. subtilis, the enzymes involved in riboflavin biosynthesis are clustered in an
operon that also comprises an additional open reading frameribT of unknown
function (20, 21, 23–25, 27, 45, 86). The transcriptional activity of this operon
can be regulated over a wide range (14). A generibC that had been assumed to
specify a repressor protein was recently shown to code for a bifunctional riboflavin
kinase/FAD synthetase (20–22, 27–29, 34, 35, 66). The regulatory function of this
enzyme remains to be explained.

BIOTECHNOLOGY OF RIBOFLAVIN

Riboflavin is a technical bulk product for use in human and animal nutrition. Until
recently, the vitamin was produced predominantly by chemical synthesis. Cur-
rently, fermentation processes usingB. subtilis, Ashbya gossypii, or Candida yeasts
are progressively replacing the synthetic preparation method (50, 82). Recombi-
nantB. subtilisstrains for the production of vitamin B2 have been described in
considerable detail elsewhere (35, 66, 104).

Recently, a method was proposed to use riboflavin-deficient mutants ofActi-
nobacillus pleuropneumoniaeas vaccines for pigs (43). Enterobacteriaceae have
no uptake system for riboflavin. Therefore, riboflavin-deficient mutants cannot
grow in a mammalian host, although they can be cultured in vitro in the presence
of large amounts of riboflavin.
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